[转]平衡二叉树
来源:http://www.cppblog.com/bellgrade/archive/2009/10/12/98402.html
http://blog.csdn.net/w170532934/article/details/7571281
收集两篇文章
形态匀称的二叉树称为平衡二叉树 (Balanced binary tree) ,其严格定义是:
一棵空树是平衡二叉树;若 T 是一棵非空二叉树,其左、右子树为 TL 和 TR ,令 hl 和 hr
分别为左、右子树的深度。当且仅当
①TL 、 TR 都是平衡二叉树;
② | hl - hr |≤ 1;
时,则 T 是平衡二叉树。
【例】如图 8.4 所示。
(a)平衡二叉树 (b)非平衡二叉树
图8.3
平衡二叉树与非平衡二叉树
相应地定义 hl - hr 为二叉平衡树的平衡因子 (balance factor) 。因此,平衡二叉树上所有结点的平衡因子可能是
-1 , 0 , 1 。换言之,若一棵二叉树上任一结点的平衡因子的绝对值都不大于 1
,则该树是就平衡二叉树。
动态平衡技术
1.动态平衡技术
Adelson-Velskii 和 Landis
提出了一个动态地保持二叉排序树平衡的方法,其基本思想是:
在构造二叉排序树的过程中,每当插入一个结点时,首先检查是否因插入而破坏了树的平衡性,如果是因插入结点而破坏了树的平衡性,则找出其中最小不平衡子树,在保持排序树特性的前提下,调整最小不平衡子树中各结点之间的连接关系,以达到新的平衡。通常将这样得到的平衡二叉排序树简称为 AVL
树。
2.最小不平衡子树
以离插入结点最近、且平衡因子绝对值大于 1 的结点作根结点的子树。为了简化讨论,不妨假设二叉排序树的最小不平衡子树的根结点为
A ,则调整该子树的规律可归纳为下列四种情况:
(1) LL 型:
新结点 X 插在 A 的左孩子的左子树里。调整方法见图 8.5(a) 。图中以 B 为轴心,将 A 结点从 B 的右上方转到
B 的右下侧,使 A 成为 B 的右孩子。
图8.5
平衡调整的4种基本类型(结点旁的数字是平衡因子)
(2)RR 型:
新结点 X 插在 A 的右孩子的右子树里。调整方法见图 8.5(b) 。图中以 B 为轴心,将 A 结点从 B 的左上方转到
B 的左下侧,使 A 成为 B 的左孩子。
(3)LR 型:
新结点 X 插在 A 的左孩子的右子树里。调整方法见图 8.5(c) 。分为两步进行:第一步以 X 为轴心,将 B 从 X
的左上方转到 X 的左下侧,使 B 成为 X 的左孩子, X 成为 A 的左孩子。第二步跟 LL 型一样处理 ( 应以 X 为轴心
) 。
(4)RL 型:
新结点 X 插在 A 的右孩子的左子树里。调整方法见图 8.5(d) 。分为两步进行:第一步以 X 为轴心,将 B 从 X
的右上方转到 X 的右下侧,使 B 成为 X 的右孩子, X 成为 A 的右孩子。第二步跟 RR 型一样处理 ( 应以 X 为轴心
) 。
【例】
实际的插入情况,可能比图 8.5 要复杂。因为 A 、 B
结点可能还会有子树。现举一例说明,设一组记录的关键字按以下次序进行插入: 4 、 5 、 7 , 2 、 1 、 3 、 6
,其生成及调整成二叉平衡树的过程示于图 8.6 。
在图 8.6 中,当插入关键字为 3 的结点后,由于离结点 3 最近的平衡因子为 2 的祖先是根结点 5
。所以,第一次旋转应以结点 4 为轴心,把结点 2 从结点 4 的左上方转到左下侧,从而结点 5 的左孩子是结点 4 ,结点 4
的左孩子是结点 2 ,原结点 4 的左孩子变成了结点 2 的右孩子。第二步再以结点 4 为轴心,按 LL
类型进行转换。这种插入与调整平衡的方法可以编成算法和程序,这里就不再讨论了。
图 8.6
二叉平衡树插入结点 ( 结点旁的数字为其平衡因子 )
平衡二叉树多用于查找数据,所以平衡二叉树又是颗二叉排序树。
那么如何创建一颗平衡二叉树呢?
创建平衡二叉树,我们采用依次插入节点的方式进行。而平衡二叉树上插入节点采用递归的方式进行。递归算法如下:
(1) 若该树为一空树,那么插入一个数据元素为e的新节点作为平衡二叉树的根节点,树的高度增加1。
(2) 若待插入的数据元素e和平衡二叉树(BBST)的根节点的关键字相等,那么就不需要进行插入操作。
(3) 若待插入的元素e比平衡二叉树(BBST)的根节点的关键字小,而且在BBST的左子树中也不存在和e有相同关键字的节点,则将e插入在BBST的左子树上,并且当插入之后的左子树深度增加1时,分别就下列情况处理之。
(a) BBST的根节点的平衡因子为-1(右子树的深度大于左子树的深度):则将根节点的平衡因子更改为0,BBST的深度不变;
(b) BBST的根节点的平衡因子为0(左右子树的深度相等):则将根节点的平衡因子修改为1,BBST的深度增加1;
(c) BBST的根节点的平衡因子为1(左子树的深度大于右子树的深度):若BBST的左子树根节点的平衡因子为1,则需要进行单向右旋转平衡处理,并且在右旋处理后,将根节点和其右子树根节点的平衡因子更改为0,树的深度不变;
若BBST的左子树根节点的平衡因子为-1,则需进行先向左,后向右的双向旋转平衡处理,并且在旋转处理之后,修改根节点和其左,右子树根节点的平衡因子,树的深度不变;
(4) 若e的关键字大于BBST的根节点的关键字,而且在BBST的右子树中不存在和e有相同关键字的节点,则将e插入到BBST的右子树上,并且当插入之后的右子树深度加1时,分别就不同的情况处理之。
(a) BBST的根节点的平衡因子是1(左子树的深度大于右子树的深度):则将根节点的平衡因子修改为0,BBST的深度不变;
(b) BBST的根节点的平衡因子是0(左右子树的深度相等):则将根节点的平衡因子修改为-1,树的深度加1;
(c) BBST的根节点的平衡因子为-1(右子树的深度大于左子树的深度):若BBST的右子树根节点的平衡因子为1,则需要进行两次选择,第一次先向右旋转,再向左旋转处理,并且在旋转处理之后,修改根节点和其左,右子树根节点的平衡因子,树的深度不变;
若BBST的右子树根节点的平衡因子为1,则需要进行一次向左的旋转处理,并且在左旋之后,更新根节点和其左,右子树根节点的平衡因子,树的深度不变;
下面附上本人的代码:
#include <stdio.h> #include <stdlib.h> /************************************************************************/ /* 平衡二叉树---AVL */ /************************************************************************/ #define LH +1 #define EH 0 #define RH -1 typedef int ElemType; typedef struct BSTNode{ ElemType data; int bf;//balance flag struct BSTNode *lchild,*rchild; }*PBSTree; void R_Rotate(PBSTree* p) { PBSTree lc = (*p)->lchild; (*p)->lchild = lc->rchild; lc->rchild = *p; *p = lc; } void L_Rotate(PBSTree* p) { PBSTree rc = (*p)->rchild; (*p)->rchild = rc->lchild; rc->lchild = *p; *p = rc; } void LeftBalance(PBSTree* T) { PBSTree lc,rd; lc = (*T)->lchild; switch (lc->bf) { case LH: (*T)->bf = lc->bf = EH; R_Rotate(T); break; case RH: rd = lc->rchild; switch(rd->bf) { case LH: (*T)->bf = RH; lc->bf = EH; break; case EH: (*T)->bf = lc->bf = EH; break; case RH: (*T)->bf = EH; lc->bf = LH; break; } rd->bf = EH; L_Rotate(&(*T)->lchild); R_Rotate(T); break; } } void RightBalance(PBSTree* T) { PBSTree lc,rd; lc= (*T)->rchild; switch (lc->bf) { case RH: (*T)->bf = lc->bf = EH; L_Rotate(T); break; case LH: rd = lc->lchild; switch(rd->bf) { case LH: (*T)->bf = EH; lc->bf = RH; break; case EH: (*T)->bf = lc->bf = EH; break; case RH: (*T)->bf = EH; lc->bf = LH; break; } rd->bf = EH; R_Rotate(&(*T)->rchild); L_Rotate(T); break; } } int InsertAVL(PBSTree* T,ElemType e,bool* taller) { if ((*T)==NULL) { (*T)=(PBSTree)malloc(sizeof(BSTNode)); (*T)->bf = EH; (*T)->data = e; (*T)->lchild = NULL; (*T)->rchild = NULL; } else if (e == (*T)->data) { *taller = false; return 0; } else if (e < (*T)->data) { if(!InsertAVL(&(*T)->lchild,e,taller)) return 0; if(*taller) { switch ((*T)->bf) { case LH: LeftBalance(T); *taller = false; break; case EH: (*T)->bf = LH; *taller = true; break; case RH: (*T)->bf = EH; *taller = false; break; } } } else { if(!InsertAVL(&(*T)->rchild,e,taller)) return 0; if (*taller) { switch ((*T)->bf) { case LH: (*T)->bf = EH; *taller = false; break; case EH: (*T)->bf = RH; *taller = true; break; case RH: RightBalance(T); *taller = false; break; } } } return 1; } bool FindNode(PBSTree root,ElemType e,PBSTree* pos) { PBSTree pt = root; (*pos) = NULL; while(pt) { if (pt->data == e) { //找到节点,pos指向该节点并返回true (*pos) = pt; return true; } else if (pt->data>e) { pt = pt->lchild; } else pt = pt->rchild; } return false; } void InorderTra(PBSTree root) { if(root->lchild) InorderTra(root->lchild); printf("%d ",root->data); if(root->rchild) InorderTra(root->rchild); } int main() { int i,nArr[] = {1,23,45,34,98,9,4,35,23}; PBSTree root=NULL,pos; bool taller; for (i=0;i<9;i++) { InsertAVL(&root,nArr[i],&taller); } InorderTra(root); if(FindNode(root,103,&pos)) printf("\n%d\n",pos->data); else printf("\nNot find this Node\n"); return 0; }
- 阅读:5945 时间:May 21, 2013, 10:31 a.m.
- 阅读:5782 时间:May 21, 2013, 10:45 a.m.